伊敷喜斗のホームページ

Yoshito Ishiki's Home Page

Yoshito Ishiki. A mathematician.
I'm interested in metric geometry and general topology, or topological metric geometry.

伊敷喜斗.数学者.距離空間の幾何学を研究している数学者です.
興味:距離空間の幾何学と一般位相幾何学, もしくは位相的距離幾何学.

He/him.

E-mail: ishiki-yoshito[at mark]tmu.ac.jp

Current Position: Postdoctoral researcher of Tokyo Metropolitan University.

現在の身分: 東京都立大学 特別研究員 (雇用PD) (学振PD採用者)

Links to Resaerch map
Link to Google Scholar.


Go to...   Papers    Talks    Meomos/Notes    Lecture Notes/講義ノート


Recent situation

近況

Schedule

出張・セミナー発表・セミナー聴講予定など

  1. None

My recent papers

最近の私の論文

  1. 27th September/2024, arXiv:2409.17701 This is a joint work with Katsuhisa Koshino. We researched isometric universality of spaces of metrics. For examples, we prove that the space of metrics on the Cantor set admits an isometric embedding from arbitrary compact metric spaces.
  2. I am writing a manuscript titled "A survey on comgear subsets in spaces of metrics" for submitting to RIMS Kôkyûroku as an article based on my talk in "RIMS symposium (open), General topology and related fields, in June 2024".
  3. 4th July/2024, arXiv:2407.03030 , An isometric extensor of metrics.
    For a metrizable space, and its closed subset, an extensor of metrics is defined as a map from the space of metrics on the closed subset into the space of metrics on the space, which actually extendes metrics. I constructed an extensor of metrics, which preserving the supremum metrics on spaces of metrics.
  4. Feb/2024, arXiv:2402.04565 , Spaces of metrics are Baire.
    I proved that, for an arbitrary metrizable space, the space of metrics on the space is Baire with respect to the uniform topology.

CV

経歴

Education

学歴

Employment

職歴

Awards

受賞歴


Lecture Notes

講義ノート

Go to Page of Lecture Notes

Talks

研究発表

Go to Page of Talks

Papers

論文

Go to Page of Papers

Memos/Notes

メモ/ノート

Go to Page of Meomos/Notes

Links

Links to arXiv

  1. arXiv:1710.08190 , Quasi-symmetric invariant properties of Cantor metric spaces
  2. arXiv:1911.07455 , On the Assouad dimension and convergence of metric spaces
  3. arXiv:1911.10775 , A characterization of metric subspaces of full Assouad dimension
  4. arXiv:2003.13227 , An interpolation of metrics and spaces of metrics
  5. arXiv:2008.10209 , An embedding, an extension, and an interpolation of ultrametrics
  6. arXiv:2104.12450 , On dense subsets in spaces of metrics
  7. arXiv:2108.06970 , Branching geodesics of the Gromov--Hausdorff distance
  8. arXiv:2110.01881 , Fractal dimensions in the Gromov--Hausdorff space
  9. arXiv:2111.08199 , Continua in the Gromov--Hausdorff space
  10. arXiv:2112.05345 , Metric trees in the Gromov--Hausdorff space
  11. arXiv:2206.10778 , Simultaneous extensions of metrics and ultrametrics of high power
  12. arXiv:2207.12765 , On comeager sets of metrics whose ranges are disconnected
  13. arXiv:2207.12905 , Extending proper metrics
  14. arXiv:2210.02170 , Strongly rigid metrics in spaces of metrics
  15. arXiv:2212.13409 , A factorization of metric spaces
  16. arXiv:2302.00305 , Constructions of Urysohn universal ultrametric spaces
  17. arXiv:2302.00306 , Uniqueness and homogeneity of non-separable Urysohn universal ultrametric spaces
  18. arXiv:2303.17471 , Characterizations of Urysohn universal ultrametric spaces
  19. arXiv:2309.06704 , A non-Archimedean Arens--Eells isometric embedding theorem on valued fields
  20. arXiv:2402.04565 , Spaces of metrics are Baire
  21. arXiv:2407.03030 , An isometric extensor of metrics
  22. arXiv:2409.17701 , On isometric universality of spaces of metrics (joint work with Katsuhisa Koshino)

Links to my academic accounts

  1. Google Scholar
  2. ORCiD
  3. zbMATH
  4. Resaerch map

Photos

写真

A real Cantor set in Wakoshi city, Saitama:

A real Cantor set in Saitoma, whihch is a tree without leaves

Real Cantor sets in Hachioji city, Tokyo:

Real Cantor sets in Tokyo, which are trees without leaves