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A CHEATSHEET ON NON-ARCHIMEDEAN ANALOGUES IN METRIC GEOMETRY

YOSHITO ISHIKI

俺はゴゴ。ずっと物まねをして生きてきた。お前達は久しぶりの来客だ。
そうだ。お前達の物まねをしてやろう。お前達は今何をしているんだ？
そうか。世界を救おうとしているのか。
では俺も世界を救うという物まねをしてみるとしよう。

ものまね士ゴゴ: ファイナルファンタジー 6

I am Gogo, master of mimicry. It has been a long, long time since anyone visited me
here...
I have been idle for too many years... Perhaps I ought to mimic you. Tell me, what are
you doing here?
I see... So you seek to save the world.
Then I guess that means that I shall save the world as well. Lead on! I will copy your
every move.

Gogo: Final Fantasy VI, English version of the above epigraph.
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Abstract

In contrast to conventional mathematics, there exists a domain that could be referred to as “zero-dimensional
mathematics”. A vivid example of this is “non-Archimedean functional analysis” based on the field Qp of p-adic
numbers, as opposed to conventional functional analysis based on the field R of real numbers. Although this zero-
dimensional world acts as a reflective mirror to our familiar universe, we can find both of Archimedean phenomena
that cannot be translated into zero dimensions, and non-Archimedean phenomena that are beyond the expectations
of conventional mathematics. In this note, we explain some non-Archimedean analogues in metric geometry.

1. Table of analogues

In this section, we give a table of analogues between Archimedean mathematics and non-Archimedean one. The
left hand side is corresponding to Archimedean things, and the other side is for non-Archimedean things.

Archimedean things Non-Archimedean things

Analysis Non-Archimedean analysis (p-adic analysis). See [5]
and [29].

Functional analysis Non-Archimedean functional analysis. See [1], [32], [24],
and [29].

Hahn fields (see [26], [19] and [6]). p-adic Hahn fields. The author calls them the Poonen
fields (see [26] and [6]).

Regular spaces Ultraregular spaces, which means that the spaces have
small inductive dimension 0.

Normal spaces. Ultranormal spaces, which means that the spaces have
large inductive dimension 0.



NON-ARCHIMEDEAN 3

Paracompact spaces. Ultraparacompact spaces (see [9]). A space X is ultra-
paracompact if and only if X is paracompact and has
covering dimension 0.

The Hilbert cube [0, 1]ℵ0. The Cantor set {0, 1}ℵ0.

The space Rℵ0 of sequences of reals The space ωℵ0
0 of sequences of integers which also co-

incides with the space of irrationals.

Paracompactness and normality:

Theorem 1.1. Every paracompact Hausdorff space
is normal.

Ultraparacompactness and ultranormality:

N.-A. Theorem 1.1. Every ultraparacompact
Hausdorff space is ultranormal.

Michael’s continuous selection theorem([22]) 0-dimensional Michael’s continuous selection theorem
([22] and [23]).

The operator +: the additional operator on R The operator ∨: the maximal operator on R. Namely,
x ∨ y = max{x, y}.

The triangle inequality: d(x, y) ≤ d(x, z) + d(z, y). The strong triangle inequality:
d(x, y) ≤ d(x, z) ∨ d(z, y).

The space [0,∞): the set of non-negative real numbers.
In this note we consider that all metrics take values in
[0,∞). Of course, we can find research on metric taking
values in some restricted subset of [0,∞).

The space R: a range set, a set s.t. 0 ∈ R and
R ⊆ [0,∞). It is often convenient to consider R-
valued non-Archimedean analogues rather than only
non-Archimedean analogues.
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A metric : d : X ×X → [0,∞). An R-valued ultrametric d : X × X → R. For some
reasons, when considering ultrametrics, it is useful to
treat R-valued ultrametrics for a range set R, instead
of ([0,∞)-valued) ultrametrics.

The Stone theorem on paracompactness:

Theorem 1.2 ([30] and [27]). Every metrizable space
is paracompact.

The non-Archimedean Stone theorem on paracompact-
ness:

N.-A. Theorem 1.2. Every ultrametrizable space
is ultraparacompact.

For the proof, we refer the readers to [9, Proposition 1.2
and Corollary 1.4] and [7, Theorem II].

The Euclidean metric |x− y|. This can be represented
as |x− y| = inf{ϵ ∈ R | x ≤ y + ϵ and y ≤ x + ϵ}.

The non-Archimedean Euclidean metric MR on
R defined by MR(x, y) = inf{ϵ ∈ R |
x ≤ y ∨ ϵ and y ≤ x ∨ ϵ}. This metric also can be rep-
resented as MR(x, y) = x ∨ y if x ≠ y; otherwise,
MR(x, y) = 0.

Theory of retracts (of metric spaces). There is no theory of retracts of ultrametric spaces be-
cause every non-empty closed subsets of an ultrametric
space is a (Lipschitz) retract of the ambient space ([4]).
That is to say, in a category of ultrametric spaces, all
extension problems are trivial.
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The Banach–Mazur theorem:

Theorem 1.3. The space C([0, 1],R) is universal
for all separable metric spaces. Namely, every sep-
arable metric space can be isometrically embedded
into C([0, 1],R).

Note that this theorem is often proven by showing that
C(Γ,R) is universal for all separable metric spaces.

A non-Archimedean Banach-Mazur theorem:

N.-A. Theorem 1.3 ([16]). The space C0(Γ, R)
is universal for all separable R-valued ultramet-
ric spaces. Namely, every separable R-valued ul-
trametric space can be isometrically embedded into
C0(Γ, R).

Note that the space C0(Γ, R) does not have an algebraic
structure.

The space of metrics: Met(X). The set Met(X) is
defined as the set of all metrics on X that generate the
same topology of X .

The space of R-valued ultrametrics: UMet(X ;R). The
set UMet(X ;R) is defined as the set of all R-valued
ultrametrics on X that generate the same topology of
X .

The supremum metric DX on Met(X) defined by
UDX(d, e) = supx,y∈X |d(x, y) − e(x, y)|. This coin-
cides with the infimum of all ϵ ∈ (0,∞) such that
d(x, y) ≤ e(x, y) + ϵ and e(x, y) ≤ d(x, y) + ϵ.

The metric UDR
X on UMet(X ;R) defined by declaring

that UDX(d, e) is the infimum all ϵ ∈ (0,∞) such that
d(x, y) ≤ e(x, y) ∨ ϵ and e(x, y) ≤ d(x, y) ∨ ϵ.
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The Arens–Eells theorem:

Theorem 1.4 ([3]). For every metric space (X, d)
there exist a a normed space (V, ∥∗∥) over R and an
isometric embedding I : X → V such that the image
I(X) is closed and linearly independent in V .

A candidate of a non-Archimedean Arens–Eells theo-
rem:

N.-A. Theorem 1.4 ([14, Thm 1.1]). Let (A, | ∗ |)
be an integral ring equipped with the trivial absolute
value, i.e., |x| = 1 if x ̸= 0. Let R be a range set.
Then for every R-valued ultrametric space (X, d)
there exist a an ultra-normed space (V, ∥∗∥) over A
and an isometric embedding I : X → V such that
the image I(X) is closed and linearly independent
in V .

The Kuratowski embedding X → C(X). A candidate of a non-Archimedean Kuratowski embed-
ding is the Schikhof embedding X → K (see [28]),
where K is a large non-Archimedean valued field.
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The Hausdorff metric extension theorem:

Theorem 1.5 ([12]). Let X be a metrizable space,
and A be a closed subset of X. The for every d ∈
Met(A), there exists D ∈ Met(X) such that D|A×A =
d. Moreover, if X is completely metrizable, and d is
complete, then we can choose D as a complete one.

A non-Archimedean Hausdorff extension(An ultramet-
ric extension theorem):

N.-A. Theorem 1.5 ([14]). Let R be a range set,
X be a metrizable space, and A be a closed subset
of X. The for every d ∈ UMet(A;R), there exists
D ∈ UMet(X ;R) such that D|A×A = d. Moreover, if
X is completely metrizable, and d is complete, then
we can choose D as a complete one.

Hyperspace. For a metric space (X, d), the space of all
compact subsets of X with the Hausdorff distance is
called the hyperspace of (X, d).

Hyperspace. Since the Hausdorff metric of an ultramet-
ric becomes an ultrametric, the construction of hyper-
spaces is a non-Archimedean analogue of itself.

The Gromov–Hausdorff space (M,GH). This space is
a moduli space of all compact metric space equipped
with the Gromov–Hausdorff distance GH.

The non-Archimedean Gromov–Hausdorff space
(UR,NA). This space is a moduli space of all R-valued
compact ultrametric space equipped with the R-valued
non-Archimedean Gromov–Hausdorff distance NA.

Strongly rigid metrics (see [18]). There is no non-Archimedean analogues of strongly
rigid metrics because all triangles in ultrametrics are
isosceles.

F: the class of all finite metric spaces N(R): the class of all finite R-valued ultrametric spaces

F-injectivity N(R)-injectivity
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The Urysohn universal space (U, ρ). This space is a
separable complete F-injective metric space. Such a
space is unique up to isometry. See [13], [20], [21], [25],
and [31].

The Urysohn universal ultrametric space (VR, σR).
When R is countable, this space is a separable R-valued
N(R)-injective ultrametric space. When R is uncount-
able, it is defined as the R-petaloid ultrametric space.
In any case, such a space is unique up to isometry. For
the case where R is countable, see [10], [33], [16]. For
the uncountable case, see [17]. See also [8].

The quotient metric space of the hyperspace of (U, ρ)
by Isom(U, ρ) is isometric to the Gromov–Hausdorff
space (M,GH). (see [11, Exercise (b) in the page 83],
[2, Theorem 3.4], and [33]).

The R-valued Gormov–Hausdorff ultrametric space is
isometric to (VR, σR). See [33] and [17].

Products: For any p ∈ [0,∞], it is true that
(U× U, ρ×p ρ) ̸≡

Isom
(U, ρ) (see [15]).

Products: It is true that
(VR × VR, σR ×∞ σR) ≡

Isom
(VR, σR) (see [15])

Hyperspaces: It is unknown whether
(K(U),HDρ) ≡

Isom
(U, ρ) or not.

The author thinks this is negative.

Hyperspaces: It is true that
(K(VR),HDσR) ≡

Isom
(VR, σR) (see [15]).
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